
$BOARD
Smart Contract Audit
PRITOM RAJKHOWA

Audit Summary

Contract Address 0xD8513c22Dd61161ba3872859A6D10eB1612Df742

https://polygonscan.com/token/0xD8513c22Dd61161ba3872859A6D10eB1612Df742

Findings Summary

Critical

PUBLIC BURN

The contract was found to be using public or an external burn
function. The function was missing access control to prevent another
user from burning their tokens. Also, the burn function was found to be
using a different address than msg.sender.

Critical

PUBLIC BURN
The contract was found to be using public or an external burn function. The
function was missing access control to prevent another user from burning their
tokens. Also, the burn function was found to be using a different address than
msg.sender.

Critical

INCORRECT ACCESS CONTROL
Access control plays an important role in segregation of privileges in smart
contracts and other applications. If this is misconfigured or not properly
validated on sensitive functions, it may lead to loss of funds, tokens and in
some cases compromise of the smart contract.

Critical

INCORRECT ACCESS CONTROL
Access control plays an important role in segregation of privileges in
smart contracts and other applications. If this is misconfigured or not
properly validated on sensitive functions, it may lead to loss of funds,
tokens and in some cases compromise of the smart contract.

Critical

INCORRECT ACCESS CONTROL
Access control plays an important role in segregation of privileges in smart contracts and other
applications. If this is misconfigured or not properly validated on sensitive functions, it may lead to
loss of funds, tokens and in some cases compromise of the smart contract.

High

UNCHECKED TRANSFER
Some tokens do not revert the transaction when the transfer or transferFrom fails and
returns False. Hence we must check the return value after calling
the transfer or transferFrom function.

High

UNCHECKED ARRAY LENGTH
Ethereum is a very resource-constrained environment. Prices per computational step are
orders of magnitude higher than with centralized providers. Moreover, Ethereum miners
impose a limit on the total number of Gas consumed in a block. If array.length is large
enough, the function exceeds the block gas limit, and transactions calling it will never be
confirmed.
for (uint256 i = 0; i < array.length ; i++) { cosltyFunc(); }
This becomes a security issue if an external actor influences array.length.
E.g., if an array enumerates all registered addresses, an adversary can register many
addresses, causing the problem described above.

High

APPROVE FRONT-RUNNING ATTACK
The approve() method overrides current allowance regardless of whether the spender already used
it or not, so there is no way to increase or decrease allowance by a certain value atomically unless
the token owner is a smart contract, not an account.
This can be abused by a token receiver when they try to withdraw certain tokens from the sender's
account.
Meanwhile, if the sender decides to change the amount and sends another approve transaction,
the receiver can notice this transaction before it's mined and can extract tokens from both the
transactions, therefore, ending up with tokens from both the transactions. This is a front-running
attack affecting the ERC20 Approve function.
The function approve can be front-run by abusing the _approve function.

High

APPROVE FRONT-RUNNING ATTACK
The transferFrom() method overrides current allowance regardless of whether the spender already
used it or not, so there is no way to increase or decrease allowance by a certain value atomically
unless the token owner is a smart contract, not an account.
This can be abused by a token receiver when they try to withdraw certain tokens from the sender's
account.
Meanwhile, if the sender decides to change the amount and sends another approve transaction,
the receiver can notice this transaction before it's mined and can extract tokens from both the
transactions, therefore, ending up with tokens from both the transactions. This is a front-running attack
affecting the ERC20 Approve function.

High

APPROVE FRONT-RUNNING ATTACK

The burnFrom() method overrides current allowance regardless of whether the spender
already used it or not, so there is no way to increase or decrease allowance by a certain
value atomically unless the token owner is a smart contract, not an account.
This can be abused by a token receiver when they try to withdraw certain tokens from the
sender's account.
Meanwhile, if the sender decides to change the amount and sends
another approve transaction, the receiver can notice this transaction before it's mined and
can extract tokens from both the transactions, therefore, ending up with tokens from both the
transactions. This is a front-running attack affecting the ERC20 Approve function.
The function burnFrom can be front-run by abusing the _approve function.

	$BOARD�Smart Contract Audit
	Audit Summary
	Findings Summary
	Critical
	Critical
	Critical
	Critical
	Critical
	High
	High
	High
	High
	High

