$BOARD
Smart Contract Audit

Audit Summary

Contract Address 0xD8513c22Dd61161ba3872859A6D10eB1612Df742

Project Name MAX_CONTRACT
Contract Type Smart Contract
Language Solidity
Codebase File Scan

Audit Methodology Static Scanning

& Soteria

https://polygonscan.com/token/0xD8513c22Dd61161ba3872859A6D10eB1612Df742

Findings Summary

Critical 5 Low 102
e f—————]

136 High 8 Informational 58
°
Medium 1 Gas 136

& Soteria

678
679 function burn(uint256 amount) public virtual {

680 _burn(_msgSender(), amount);
681 i
PUBLIC BURN

The contract was found to be using public or an external burn
function. The function was missing access control to prevent another
user from burning their tokens. Also, the burn function was found to be
using a different address than msg.sender.

& Soteria

PUBLIC BURN

The contract was found to be using public or an external burn function. The
function was missing access control to prevent another user from burning their
tokens. Also, the burn function was found to be using a different address than

msg.sender.

694
695
696
697
698
699
700
701
702

function burnFrom(address account, uint256 amount) public virtual {
uint256 decreasedAllowance = allowance(account, _msgSender()).sub(
amount,
"ERC2@: burn amount exceeds allowance"

);

_approve(account, _msgSender(), decreasedAllowance);
_burn(account, amount);

Q} Soteria

216
217
218
219
220
221

222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238

function withdrawToken() external nonReentrant afterStakeEnded {

}

require(
userInfo[msg.sender].withdrawnAmount == @,
"[StakingV2.withdrawToken] user already withdrawn"
NE
require(
getUserUnclaimAmount(msg.sender) == @,
" [StakingV2.withdrawToken] unclaim amount should be zero befort
)
uint256 userStakeAmount = userInfo[msg.sender].stakeAmount;
userInfolmsg.sender].withdrawnAmount += userStakeAmount;
stakingFactory.vaultTransferTokenToAddress(
msg.sender,
tokenAddress,
userStakeAmount

M

emit TokenWithdrawn(msg.sender, userStakeAmount);

INCORRECT ACCESS CONTROL

Access control plays an important role in segregation of privileges in smart
contracts and other applications. If this is misconfigured or not properly
validated on sensitive functions, it may lead to loss of funds, tokens and in
some cases compromise of the smart contract.

& Soteria

240
241
242
243
244 function claimReward() external nonReentrant afterStakeStarted {

245 uint256 unclaimAmount = getUserUnclaimAmount(msg.sender});
246 require(

247 unclaimAmount > @,

248 "[StakingV2.claimReward] No claimable reward"
249);

250 userInfolmsg.sender].claimedAmount += unclaimAmount;
251 distributedReward += unclaimAmount;

252 stakingFactory.vaultTransferTokenToAddress(

253 msg.sender,

254 tokenAddress,

255 unclaimAmount

256);

257

258 emit RewardClaimed(msg.sender, unclaimAmount);

259 b

260

INCORRECT ACCESS CONTROL

Access control plays an important role in segregation of privileges in
smart contracts and other applications. If this is misconfigured or not
properly validated on sensitive functions, it may lead to loss of fundes,
tokens and in some cases compromise of the smart contract.

C:) Soteria

function stakeToken(uint256 _tokenAmount)
193 external

194 whenNotPaused
beforeStakeStarted

require(
198 _tokenAmount + userInfo[msg.sender].stakeAmount <= userStakelLi
199 "[StakingV2.stakeToken] total stake amount should be less than
200 D
201 require(
202 _tokenAmount + poolStakeTotal <= poolStakelLimit,
203 "[StakingV2.stakeToken] total stake amount should be less than
204);
205 stakingFactory.vaultPayWithToken(
206 msg.sender,
207 tokenAddress,
208 _tokenAmount
209);
210 userInfolmsg.sender].stakeAmount += _tokenAmount;
211 poolStakeTotal += _tokenAmount;
212
213 emit TokenStaked(msg.sender, _tokenAmount);
214 }
215

INCORRECT ACCESS CONTROL

Access control plays an important role in segregation of privileges in smart contracts and other
applications. If this is misconfigured or not properly validated on sensitive functions, it may lead to
loss of funds, tokens and in some cases compromise of the smart contract.

108
109 IERC20(_tokenAddress).transferFrom(msg.sender, address(this), _tota’

110

UNCHECKED TRANSFER

Some tokens do not revert the transaction when the transfer or transferFrom fails and
returns False. Hence we must check the return value after calling
the transfer or transferFrom function.

& Soteria

for (uint256 i = @; i < _roundPaid.length; i++) {

UNCHECKED ARRAY LENGTH

Ethereum is a very resource-constrained environment. Prices per computational step are
orders of magnitude higher than with centralized providers. Moreover, Ethereum miners
impose a limit on the total number of Gas consumed in a block. If array.length is large
enough, the function exceeds the block gas limit, and transactions calling it will never be

confirmed.
for (uint256 | = 0; i < array.length ; i++) { cosltyFunc(); }
This becomes a security issue if an external actor influences array.length.

E.g., if an array enumerates all registered addresses, an adversary can register many
addresses, causing the problem described above.

C:) Soteria

432
433
434
435 function approve(address spender, uint256 amount)
436 public
437 virtual

438 override

439 returns (bool)

440 {

441 _approve(_msgSender(), spender, amount);
442 return true;

443 b

444

APPROVE FRONT-RUNNING ATTACK

The approve() method overrides current allowance regardless of whether the spender already used
it or not, so there is no way to increase or decrease allowance by a certain value atomically unless
the token owner is a smart contract, not an account.

This can be abused by a token receiver when they try to withdraw certain tokens from the sender's
account.

Meanwhile, if the sender decides to change the amount and sends another approve transaction,
the receiver can notice this transaction before it's mined and can extract tokens from both the
transactions, therefore, ending up with tokens from both the transactions. This is a front-running
attack affecting the ERC20 Approve function.

The function approve can be front-run by abusing the _approve function.

& Soteria

458 function transferFrom(

459 address sender,

460 address recipient,

461 uint256 amount

462) public virtual override returns (bool) {
463 _transfer(sender, recipient, amount);

464 _approve(

465 sender,

466 _msgSender(),

467 _allowances [sender] [_msgSender()].sub(
468 amount,

469 "ERC20: transfer amount exceeds allowance"
470)

471)3

472 return true;

473 b

474

APPROVE FRONT-RUNNING ATTACK

The transferFrom() method overrides current allowance regardless of whether the spender already
used it or not, so there is no way to increase or decrease allowance by a certain value atomically
unless the token owner is a smart contract, not an account.

This can be abused by a token receiver when they try to withdraw certain tokens from the sender's
account.

Meanwhile, if the sender decides to change the amount and sends another approve transaction,
the receiver can notice this transaction before it's mined and can extract tokens from both the
transactions, therefore, ending up with tokens from both the transactions. This is a front-running attack
affecting the ERC20 Approve function.

693
694 function burnFrom(address account, uint256 amount) public virtual {

695 uint256 decreasedAllowance = allowance(account, _msgSender(}).sub(
696 amount,
= 697 "ERC20: burn amount exceeds allowance"

H I g h 698);
699
700 _approve(account, _msgSender(), decreasedAllowance);
701 _burn(account, amount);
702 b

703

APPROVE FRONT-RUNNING ATTACK

The burnFrom() method overrides current allowance regardless of whether the spender
already used it or not, so there is no way to increase or decrease allowance by a certain
value atomically unless the token owner is a smart contract, not an account.

This can be abused by a token receiver when they try to withdraw certain tokens from the
sender's account.

Meanwhile, if the sender decides to change the amount and sends

another approve transaction, the receiver can notice this transaction before it's mined and
can extract tokens from both the transactions, therefore, ending up with tokens from both the
transactions. This is a front-running attack affecting the ERC20 Approve function.

The function burnFrom can be front-run by abusing the _approve function. CD Soteria

	$BOARD�Smart Contract Audit
	Audit Summary
	Findings Summary

	Critical
	Critical
	Critical
	Critical
	Critical
	High
	High
	High
	High
	High

